Operasi Perkalian Bentuk Aljabar
1. Menyubstitusikan Bilangan pada variabel Bentuk Aljabar
Suatu bentuk aljabar dapat ditentukan nilainya jika variabel - variabel pada bentuk aljabar tersebut disubstitusikan atau diganti dengan sembarang bilangan.
Contoh :
1. Jika a = -2, b = 4 dan c = -1, tentukan nilai dari -3a2 + 2ab - 4c!
Jawab :
Untuk a = -2, b = 4 dan c = -1 maka,
-3a2 + 2ab - 4c = -3(-2)2 + 2(-2)(4) - 4(-1) = -12 – 16 + 4 = -24
2. Perkalian Bentuk p (a + b + c) dan p (a + b - c)
Masih ingat bahwa p( x + y ) = px + py, p( x – y ) = px - py, dan p( a + x ) = pa + px .Jika nilai x pada persamaan p( a + x ) = pa + px diganti dengan ( b + c ) atau ( b – c ), maka:
· Jika x diganti dengan ( b + c ) maka,
p( a + b +c ) = pa + p( b + c )
= pa + pb + pc
p( a + b + c ) = pa + pb + pc
· Jika x diganti dengan ( b – c ) maka,
p( a + b – c ) = pa + p( b – c )
= pa + pb - pc
p( a + b – c ) = pa + pb - pc
Menyatakan bentuk perkalian menjadi bentuk penjumlahan disebut menjabarkan atau menguraikan.
Contoh :
Jika a = 2, b = -1, dan c = 1, tentukan nilai bentuk aljabar berikut.
a. 3a + 3b - 3c
b. 2a + 4b - 8c
Jawab :
a. 3a + 3b - 3c = 3( a + b – c )
= 3( 2 + (-1) -1 )
= 3( 0 )
= 0
b. 2a + 4b - 8c = 2( a + 2b - 4c )
= 2( 2 + 2(-1) -4.1 )
= 2( -4 )
= -8
Telah diketahui bahwa x( p + q ) = xp + xq.Jika pada persamaan itu nilai x diganti dengan ( a – b ) maka diperoleh
( a – b )( p + q ) = ( a – b ) p + ( a – b ) q
= ap – bp + aq – bq
( a – b )( p + q ) = ap – bp + aq – bq
Contoh :
Uraikan bentuk-bentuk aljabar berikut.
a. ( 2x – 1 )( 3y + 2 ) b. ( 5y – 3 )( 3z + 7 )
Jawab :
a. ( 2x – 1 )( 3y + 2 ) = ( 2x – 1 ) 3y + ( 2x – 1 ) 2
= ( 2x.3y – 1.3y ) + ( 2x.2 – 1.2 )
= 6xy – 3y + 4x – 2
b. ( 5y – 3 )( 3z + 7 ) = ( 5y – 3 )3z + ( 5y – 3 )7
= ( 5y.3z – 3.3z) + ( 5y.7 – 3.7)
= 15yz – 9z + 35y – 21
4. Perkalian Bentuk (a + b)(a – b)
Pada operasi perkalian berlaku persamaan ( a + b )x = ax + bx. Jika niali x pada persamaan tersebut diganti dengan ( a – b) maka diperoleh
( a + b )( a – b ) = a( a – b ) + b( a – b )
= a2 – ab + ba – b2
= a2 – ab + ab – b2
= a2 – b2
( a + b )( a – b ) = a2 – b2
Contoh :
Tentukan nilai berikut.
a. ( p + 5 )( p – 5 )
b. ( 3x + 7 )( 3x – 7 )
Jawab :
a. ( p + 5 )( p – 5 ) = p2 – 52 = p2 – 25
b. ( 3x + 7 )( 3x – 7 ) = ( 3x )2 – 72 = 9x2 – 49
5. Bentuk (a + b)2
Perhatikan bahwa bentuk ( a + b )2 merupakan perkalian ( a + b ) dengan ( a + b ) sehingga,
( a + b )2 = ( a + b ) ( a + b )
= a2 + ba + ab + b2
=a2 + ab + ab + b2 ( ba = ab adalah sifat komutatif terhadap perkalian )
= a2 + 2ab + b2
( a + b )2 = a2 + 2ab + b2
Contoh :
Uraikan bentuk-bentuk berikut.
a. ( 3p + 2 )2
b. ( 4 + 3q )2
Jawab :
a. ( 3p + 2 )2 = ( 3p + 2 ) ( 3p + 2 )
= 9p2 + 6p + 6p + 4
= 9p2 + 12p + 4
b. ( 4 + 3q )2 = ( 4 + 3q ) ( 4 + 3q )
= 16 + 12q + 12q + 9q2
= 16 + 24q + 9q2
6. Bentuk ( a – b )2
Perhatikan bahwa bentuk ( a – b )2 merupakan perkalian ( a – b ) dengan ( a – b ) sehingga,
( a – b )2 = ( a – b ) ( a – b )
= a2 – ba – ab + b2
= a2 – ab – ab + b2
= a2 – 2ab + b2
( a – b )2 = a2 – 2ab + b2
Contoh :
Uraikan bentuk-bentuk berikut.
a. ( x – 3 )2 b. ( 2y – 5 )2
Jawab :
a. ( x – 3 )2 = ( x – 3 ) ( x – 3 )
= x2 – 3x – 3x + 9
= x2 – 6x + 9
b. ( 2y – 5 )2 = ( 2y – 5 ) ( 2y – 5 )
= 4y2 – 10y – 10y + 25
= 4y2 – 20y + 25
Tidak ada komentar:
Posting Komentar